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NATIONAL AERONAU!TICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-136 

THE EFFECTS O F  THRUST REVERSAL AT MACH NUMBEXS UP 
TO 0.86 ON THE LQNGITUDINAL AND BUFFETING 

CHARACTERISTICS OF A TYPICAL 
JXT-WSPORT AIRPLANE 

COJTFIG~TION 

By Fred B. Sutton and Jack J. Brownson 

A n  invest igat ion has been made t o  determine the  e f f e c t s  of t h r u s t  
reversa l  at  r e l a t i v e l y  high speeds on the  longi tudinal  and buffet ing 
cha rac t e r i s t i c s  of a typ ica l  je t - t ransport  a i rplane configuration. Wind- 
tunnel tes ts  were conducted through ranges of angles of a t t ack  and je t -  
nozzle pressure r a t i o s  f o r  forward and reverse t h r u s t  a t  Mach numbers 
from 0.40 t o  0.66. 

The r e s u l t s  of the  invest igat ion show t h a t  thrust reversa l  can be 
used as a very e f fec t ive  method of speed control  f o r  je t - t ranspor t  
a i rp lanes  making steep, r e l a t i v e l y  rapid descents from operational a l t i -  
tudes. Use of t h r u s t  reversers  can more than double the  c ru ise  drag of 
such a i r c r a f t ,  and the tes t  r e s u l t s  show t h a t  a t  a constant Mach number 
of about 0.80 the  i n i t i a l  r a t e  of descent from cruis ing a l t i t u d e s  can be 
increased from about 5000 f e e t  per minute t o  over 12,000 f e e t  per  minute. 
Thrust reversa l  had only small e f fec ts  on the  longi tudinal  s t a b i l i t y  and 
t r i m  cha rac t e r i s t i c s  of the  model at the r e l a t i v e l y  low l i f t  coef f ic ien ts  
required f o r  rap id  descents by j e t  -transport a i r c r a f t .  Operation of the  
reversers  a t  a Mach number of 0.80 and an assumed i n i t i a l  a l t i t u d e  of 
30,000 f e e t  with complete t a i l -p ipe  blockage and the  simulated power 
normally required f o r  l e v e l  f l i g h t  resul ted i n  a small s t ab i l i z ing  
movement of the  aerodynamic center corresponding t o  about 2 percent of 
the  mean aerodynamic chord and about a +lo change i n  the  ho r i zon ta l - t a i l  
angle required f o r  t r i m .  

Reverse thrust resu l ted  i n  reductions i n  l i f t - cu rve  slope and reduced 
the  l i f t  coef f ic ien ts  a t  which s ta t ic- longi tudinal  i n s t a b i l i t y  occurred. 
However, these l i f t  coeff ic ients  were usual ly  higher than the  l i f t  
coef f ic ien ts  of i n t e r e s t  f o r  reverser  operation at  high speeds. 

The e f f ec t s  of t h rus t  reversa l  on t he  buf fe t ing  cha rac t e r i s t i c s  of 
both the  wing and t a i l  of t he  model were small. 
l i f t  coef f ic ien ts  associated with steep high-speed descents, these e f f ec t s  
were negl igible .  

A t  the  r e l a t i v e l y  low 
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INTRODUCTION 

The r e l a t i v e l y  high operational a l t i t u d e s  of current je t - t ransport  
a i r c r a f t  have caused much concern over f l i g h t  techniques f o r  rapid 
descents t o  lower a l t i t u d e s .  
quickly i n  nose-down a t t i t u d e s  and the  dynamic-pressure l imi ta t ions  of 
such speed-arresting devices as spoi le rs  and dive brakes combine t o  make 
descents from cruis ing a l t i t u d e s  r e l a t i v e l y  slow, i f  speed placards and 
s t ruc tu ra l  l imi ta t ions  a re  not t o  be exceeded. The successful development 
of thrust  reversers  f o r  reducing the  landing roll of j e t  a i r c r a f t  has 
suggested that these devices could be used t o  provide speed braking. 
Such usage would permit r e l a t i v e l y  steep and rapid descents from cruis ing 
a l t i t udes  at  control led ve loc i t i e s  near cruis ing speeds, provided the  
e f f lux  from the  reversers  did not induce adverse e f f e c t s  on the  s t a b i l i t y  
and buffeting cha rac t e r i s t i c s  of the airplane.  

The tendency of these a i r c r a f t  t o  accelerate  
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The present invest igat ion w a s  conducted i n  the  Ames 12-foot pressure 
wind t u m e l  t o  determine the  e f f e c t s  of t h r u s t  reversa l  a t  r e l a t i v e l y  
high speeds upon the  longi tudinal  and buffet ing cha rac t e r i s t i c s  of a model 
having a configuration typ ica l  of current je t - t ranspor t  a i rplanes with 
pod-mounted engines suspended from sweptback wings. The model employed 
cascade-type reversers  similar t o  those described i n  reference 1 as 
configuration 4. Tests were conducted over a Mach number range of 0.40 
t o  0.86 a t  a Reynolds number of 2,000,000. 
supplying cold compressed a i r  t o  the  nacelle exhaust nozzles f o r  a range 
of r a t i o s  of j e t  t o t a l  pressure t o  stream s t a t i c  pressures which varied 
from 1.0 ( j e t  o f f )  t o  3.5. 
a l t i t ude  of 3O,OOO f e e t ,  fu l l - s ca l e  t h r u s t  outputs of as much as 6500 
pounds per engine were simulated. 

Thrust w a s  obtained by . 

A t  Mach numbers near 0.80 and with an assumed 

NOTATION 

a 

a.c 

b 
2 

BM 

c' 

- 

CL 

mean-line designation, f r ac t ion  of chord over which design load 
i s  uniform 

aerodynamic center 

wing semispan perpendicular t o  the  plane of symmetry, f t  

becding moment, f t - l b  

wing mean aerodynamic chord, f t  

l i f t  l i f t  coef f ic ien t ,  - G 
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pitching-moment coeff ic ient  about the  quarter  point  of t he  w i n g  
i tching moment mean aerodynamic chord, p 

X 
G longi tudinal  force coeff ic ient ,  - 

a l t i t u d e ,  f t  

incidence of t he  horizontal  t a i l  with respect t o  the  wing-root 
chord, deg 

t a i l  length,  distance between the quarter po in ts  of t he  mean 
aerodynamic chords of the w i n g  and the  horizontal  t a i l ,  measured 
p a r a l l e l  t o  the plane of symmetry, f t  

free-stream Mach number 

jet-pressure r a t i o  ( r a t i o  of t o t a l  pressure i n  the  nacel le  plenum 
t o  the  free-stream nressiire) 

d 
free-stream dynamic pressure, &, lb/sq f t  2 

a rea  of semispan w i n g ,  s q  f t  

t h r u s t ,  l b  

veloci ty ,  f t / s ec  

weight flow of air ,  lb/min 

longi tudinal  force p a r a l l e l  t o  stream and pos i t ive  i n  a dragwise 
d i rec t ion ,  lb 

angle of a t t ack  of the  center l i ne  of the  fuselage,  deg 

t a i l  effect iveness  parameter, measured a t  a constant angle of a t tack  

MODEL DESCRIPTION 

The design of the  model was based on the geometry of several  current 
je t - t ranspor t  a i rplanes.  A l l  of the  a i r c r a f t  employed four podded engines 
suspended beneath 1ow:mounted sweptback wings of comparatively high aspect 
r a t i o .  The geometric parameters selected f o r  the  model generally represent 
an average of those f o r  t he  airplanes considered. 
technique w a s  employed f o r  the investigation because it permitted a l a rge r  

The semispan t e s t  
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model with consequently higher Reynolds numbers and because it g rea t ly  
simplified the  supply of compressed a i r  t o  the  jet-exhaust nozzles. The 
model represented t o  about 0.066 scale ,  the  right-hand side of t he  
hypothetical four-engine j e t  t ranspor t .  The geometry and d e t a i l s  of the  
model a r e  shown i n  f igure  1. 
wind tunnel i s  shown i n  f igure  2. 

- 
A photograph of the  model mounted i n  the  

The wing had 35' of sweepback, an aspect r a t i o  of 7.0, a taper  r a t i o  
of 0.30, and employed NACA 65 s e r i e s  thickness d is t r ibu t ions .  
d i s t r ibu t ions  of thickness were combined with an a = 1.0 mean l i n e  having 
an idea l  l i f t  coef f ic ien t  of 0.40 t o  form sect ions p a r a l l e l  t o  the  air 
stream. 

These 

The thickness-chord r a t i o  w a s  tapered i n  two sect ions from 0.14 
a t  the  r o o t  t o  0.11 a t  0.30 b/2 and from 0.11 a t  0.30 b/2 t o  0.09 a t  
the  t i p .  The wing was untwisted and had 5' of dihedral .  Construction 3 
w a s  of s t e e l  and the  surfaces were polished smooth. An a i r  duct w a s  2 
machined within the wing and extended f rom the  root  t o  the  spanwise 

A 

1 
pos i t ion  of the outboard nacelle (0.70 b/2).  

Thrus t  conditions scaled t o  represent the  output of fu l l - s i zed  
turboje t  engines were simulated by e jec t ing  compressed air from scaled 
nacel le  exhaust nozzles. The a i r  w a s  ducted through the  wing, down the  
hollow s t ru t s  supporting dummy engine nacel les ,  i n t o  the  nacelle plenum 
chambers and exhausted, e i the r  through the  exhaust nozzles or  t h rus t  
reversers.  The nacel les  and s t r u t s  were constructed of s t e e l  and were 
a t t a c h e d t o  the lower surface of t he  wing at  0.4 and 0.7 of the  wing 
semispan. The usual air  i n l e t s  i n  the  nose of the nacelle were f a i r e d  
over and the  nacel les  were constructed as simple bodies of revolution 
having an  NACA form 111 f o r  the  forebodies and portions of an NACA form 221 
f o r  the  a f t e r  sect ions.  Coordinates of the  nacel les  a r e  l i s t e d  i n  t ab le  I. 
The thrust  simulation requirements of the  invest igat ion demanded more 
air  than could be ducted at the  allowable l i n e  pressure through wing- 
nacel le  s t ru t s  having the  same thickness-chord and strut-chord t o  wing- 
chord r a t i o s  as the fu l l - s ca l e  a i rplanes used as a b a s i s  f o r  the  model 
design. Consequently, t he  thickness-chord r a t i o  of the  s t r u t s  w a s  
increased from about 0.08 t o  0.115 and the r a t i o  of s t r u t  chord t o  wing 
mean aerodynamic chord w a s  increased from about 0.50 t o  about 0.65. 
s t r u t s  had NACA 6 5 A O l l . 5  thickness d is t r ibu t ions  p a r a l l e l  t o  t he  air 
stream. 

The 

Figure l ( b )  presents  s t r u t  and nacel le  d e t a i l s .  

A cascade-type th rus t  reverser  s i m i l a r  t o  the  u n i t  presented i n  
reference 1 as configuration 4 w a s  mounted a t  the  af t  end of each nacelle.  
This arrangement consisted pr imari ly  of cascade elements mounted circwn- 
f e ren t i a l ly  i n  each s ide of t he  j e t  t a i l  pipe.  
by simulating i n t e r n a l  doors i n  the  j e t  t a i l  pipes with wedge-shaped 
plugs (see f ig .  l ( c ) ) .  These plugs blocked or p a r t i a l l y  blocked the 
normal j e t  exi ts  and forced the  e f f lux  through the  cascades which turned 
it approximately 1 6 0 ~ .  For forward t h r u s t  and power-off conditions, the  
so l id  plugs were replaced with tubular i n s e r t s  which closed off the  

Reverse thrust w a s  obtained 

.i 

. 
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i n t e r i o r  cascade openings and served as  j e t  t a i l  pipes.  
t h rus t  and power-off conditions the  exter ior  reverser  openings were 
f a i r e d  over with t h i n  sleeves (see f ig .  l(c)). 

Also, f o r  forward 

The fuselage employed f o r  these t e s t s  consisted of a cy l ind r i ca l  

The fuselage had a fineness r a t i o  of 11.5 and was  
midsection with simple f a i r ings  fore  and aft .  Fuselage coordinates are 
l i s t e d  i n  t ab le  I. 
located with respect t o  the  wing so that  t he  upper surface of t he  wing 
w a s  near ly  tangent t o  the  fuselage center l i n e  a t  the  plane of symmetry. 
The angle of incidence of the wing r o o t  with respect t o  the  fuselage 
center l i n e  w a s  2’. The fuselage was  re l ieved a t  the  wing-fuselage 
juncture and the  resu l tan t  gap sealed with sponge rubber t o  maintain an 
air  sea l ,  ye t  minimize mechanical r e s t r a in t  of t h e  wing by t h e  fuselage. 
The fuselage was  constructed of Fiberglas and aluminum s h e l l s  bol ted t o  
a heavy s t e e l  s t ruc tu ra l  member. 

The all-movable horizontal  t a i l  had an aspect r a t i o  of 4.0, a taper  
r a t i o  of 0.5,  a sweepback angle of 35’, and NACA 65A009 thickness d i s t r i -  
butions p a r a l l e l  t o  the air stream. It had no dihedral  and i t s  incidence 

The t a i l  w a s  constructed of so l id  aluminum and the  surfaces were polished 
smooth. 

---:- --- -  -L cn E: c -c CL- c - z i  - - -A -L-.,J r n - < l  ---i.-.,.* ~ - ”  n L ~ K  ~ L A L ~  w a a  a b  ) W - J  ~ C L L C L L ~  VI ~ L L C  b a i l  LVUC, L-IIVLU. AULA VVICUIL WUY V . V L / .  

Fundamental bending frequencies were determined f o r  some of the  model 
components. 
of about 25 cycles per second. The hor izonta l - ta i l  frequency w a s  about 
60 cycles  per  second. 

The wing with nacel les  and struts mounted had a frequency 

APPARATUS 

The invest igat ion was conducted i n  the  Ames 12-foot pressure wind 
tunnel.  Static-aerodynamic forces  and moments were measured w i t h  the  
lever-type balance system. Steady-state and f luc tua t ing  bending moments 
of the  wing and horizontal  t a i l  were measured with s t r a i n  gages i n s t a l l e d  
near t he  w i n g  and t a i l  roots  (see f i g .  l ( a > ) .  
were f e d  i n t o  electronic  instrumentation which analyzed data  samples 
corresponding t o  several  thousand cycles of bending moment, This apparatus, 
which i s  described i n  d e t a i l  i n  reference 2, provided the  l a rges t  peak 
values of successive 10-second samples of data  and the  steady-state 
bending moments. 

The strain-gage outputs 

Compressed air used fo r  j e t  thrust  simulation was  piped from a remote 
An arrangement of f l ex ib l e  bellows was employed reservoi r  t o  the  model. 

a t  the  juncture of the a i r  l i n e  w i t h  the f loa t ing  frame of t he  wind- 
tunnel scale  system t o  eliminate any restraining e f f ec t s  of the air  l i n e .  
A cont ro l le r  w a s  i n s t a l l ed  on the  Line t o  regulate  and maintain air 
pressure at  any desired l e v e l  between -10 and +3O psig.  Stagnation 
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pressures and temperatures a t  the  i n l e t s  t o  the j e t  nozzles were measured 
with pressure and temperature probes. 
measured by means of a standard ASME sharp-edged o r i f i ce .  

Air flow through the  system was 
.* 

TESTS 

The longi tudinal  and buffet ing cha rac t e r i s t i c s  of the  model were 
investigated at Mach numbers varying from 0.40 t o  0.86 at a Reynolds 
number of 2,000,000. 
of -4O t o  +lhO a t  Mach numbers up t o  0.70, from -4' t o  +12' a t  Mach 
numbers up t o  0.83, and from -4' t o  +loo a t  a Mach number of 0.86. 
each angle of a t tack,  forward and reverse th rus t  conditions were general ly  
varied from power off (Pn/p, = 1.0) t o  simulated th rus t  outputs exceeding 
those normally required by a fu l l - sca l e  a i rplane f o r  l e v e l  f l i g h t .  
Reverse th rus t  w a s  usually obtained with the t a i l  pipe completely blocked 
(see f ig .  l ( c ) ) ;  however, some t e s t i n g  w a s  done a t  Mach numbers of 0.40, 
0.70, and 0.80 t o  determine the  e f f ec t  of p a r t i a l  t a i l -p ipe  blockage 
( f i g .  l ( c ) ) .  

Tests were made through an angle-of-attack range 

A t  

The model was t e s t ed  with a t a i l  incidence angle of -2' at a l l  t e s t  .. 
Mach numbers. I n  addition, t e s t s  were made at Mach numbers of 0.40, 
0.70, and 0.80 with t a i l  incidence angles of 00 and -4' and with the  
horizontal t a i l  removed. * 

FU3DUCTION OF DATA 

Thrust D a t a  

The basic  th rus t  parameter used for t h i s  invest igat ion w a s  the  
exhaust jet-pressure r a t i o  
the  average of total-pressure measurements i n  the  inboard and outboard 
nacelle plenums divided by free-stream s t a t i c  pressure.  The var ia t ions  
with t h i s  average pressure r a t i o  of t he  t o t a l  model forward thrus t ,  t he  
t o t a l  reverse th rus t ,  the  average reverse-thrust  r a t i o ,  and the  t o t a l  
weight f l o w s  f o r  forward and ful l - reverse  th rus t  conditions a re  presented 
i n  figure 3 f o r  zero stream veloci ty  at  atmospheric pressure. Operation 
of the  thrust reversers  at constant je t -pressure r a t i o  reduced the weight 
flow by approximately 7 percent.  
data  i s  believed t o  be r e l a t i v e l y  unimportant since most fu l l - s ca l e  
reverser i n s t a l l a t ions  w i l l  probably induce similar e f f e c t s  on the  weight 
flows of fu l l - s ca l e  engines. 

Pn/p, and, as used herein,  the  term represents  

The e f f ec t  of t h i s  l o s s  on the  t e s t  
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Force and Moment Data 

The basic  data obtained f o r  t h e  various th rus t  conditions a t  
constant angle of a t tack  and Mach number were reduced t o  conventional 
form. L i f t  coef f ic ien t  i s  shown as a function of angle of a t t ack ,  and 
longitudinal-force coef f ic ien t  and pitching-moment coef f ic ien t  a r e  shown 
as functions of lift coeff ic ient .  The data  fo r  these presentat ions were 
obtained by cross-plot t ing the constant angle-of-attack data a t  several  
constant jet-pressure r a t io s .  
at  the  Ames Research Center. 

Tabulations of t he  basic  data  are avai lable  

Buffet Data 

Fluctuations of the bending moments at  the  roots of the  w i n g  and 
horizontal  t a i l  were measured f o r  various t e s t  conditions as an indicat ion 
of r e l a t i v e  buffet ing.  
measurements of the  longi tudinal  charac te r i s t ics  and a r e  presented herein 

r a t i o s .  
t a i l  roo t s  f o r  each t e s t  condition and a r e  a l s o  shown as functions of 
l i f t  coef f ic ien t  and jet-pressure r a t i o .  

These measurements were made simultaneously with 

as functions of modei iii'i C U ~ L L L L A C ~ ~ ~  -*: - 2  --4 e-- . - . o . r r o r s l  Y L l r A U _  r-nnsfnnt. Jp+,-Fressure 
Steady-state bending moments were a l so  measured a t  the  w i q  and 

Corrections 

The data  have been cor rec ta l  f o r  c o n s t r i z t i m  eT;ects ;I?;e to t h c  
tunnel walls by the method of reference 3, f o r  tunnel-wall interference 
or iginat ing from l i f t  on the  model by the  method of reference 4, and f o r  
drag t a r e s  caused by aerodynamic forces on the turntable  upon which the  
model w a s  mounted. The corrections t o  dynamic pressure,  Mach number, 
angle of a t tack,  drag coef f ic ien t ,  and pitching-moment coef f ic ien t  a r e  
l i s t e d  i n  t ab le  11. No corrections have been made f o r  wind-tunnel-wall 
cons t ra in t  on the  e f f lux  of the jets; however, computations indicated 
t h a t  at the  Mach numbers and longitudinal-force coef f ic ien ts  of the  
subject invest igat ion such e f f e c t s  would  be negl igible .  

RESULTS AND DISCUSSION 

The basic  longi tudinal  charac te r i s t ics  of the model f o r  several  
forward and reverse th rus t  conditions a r e  presented f o r  several  horizontal-  
t a i l  incidence angles, and with the  horizontal  t a i l  removed i n  f igures  4 
through 21. 
blockage except for those presented i n  f igures  16 through 18 which 

A l l  reverse-thrust  results were obtained with f u l l  t a i l -p ipe  
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present measurements made wiLh p a r t i a l  t a i l -p ipe  blockage. 

pipe blockage. 
e f fec ts  of  th rus t  reverser operation on the  various longi tudinal  parameters 
of the model, on the  effect iveness  of the  horizontal  t a i l ,  and on wing 
and t a i l b u f f e t i n g .  Figures 33 and 36 summarize the  e f f e c t s  of thrust  
reverser operation on the  performance of a hypothetical  a i rplane similar 
t o  the  model. 

Unless other- 
w i s e  stated,  use of the expression reverse th rus t  denotes complete ta i l -  . 

Figures 22 through 34 show, f o r  selected conditions, the  

Effects of Forward and Reverse Thrust on the  
Longitudinal Character is t ics  

A 
3 
2 

on the  basic longi tudinal  cha rac t e r i s t i c s  of the model a t  Mach numbers 1 
Figures 4 through 9 show the  e f f e c t s  of forward and reverse t h r u s t  

ranging from 0.40 t o  0.86. 
l i f t  were negligible compared t o  the  e f f e c t s  of reverse t h r u s t .  Operation 
of t he  thrus t  reversers  with complete t a i l -p ipe  blockage resu l ted  i n  l i f t -  
curve slope reductions which increased with increasing jet-pressure r a t i o .  
This e f fec t  i s  summarized f o r  several  Mach numbers i n  f igure  22. With 
reverse th rus t ,  l a rge  reductions i n  l i f t - cu rve  slope occurred a t  j e t -  
pressure r a t i o s  near those required f o r  steady l e v e l  f l i g h t .  

I n  general ,  the  e f f ec t s  of forward thrust on 

1. 

c 

The e f f e c t s  of t h rus t  reversa l  on the longitudinal-force coef f ic ien t  
charac te r i s t ics  of the  model were la rge .  For example, t he  drag of the  
model (posi t ive longi tudinal  force)  w a s  more than doubled by operation 
of the  thrust reversers  at  t e s t  conditions approximating fu l l - sca l e  cruise .  
(See f i g .  7(b) for  M = 0.80, Pn/p, = 3.0, and CL = 0.30.) 
a re  summarized fo r  several  Mach numbers i n  f igure  23 which shows net  
longitudinal-f orce coef f ic ien t  ( longitudinal-f  orce coef f ic ien t  f o r  forward 
or reverse th rus t  l e s s  the longitudinal-force coef f ic ien t  f o r  power o f f )  
as a function of jet-pressure r a t i o .  It i s  of i n t e r e s t  t o  note t h a t  f o r  
the  conditions shown, the  net reverse t h r u s t  exceeded the  net  forward 
th rus t  and t h a t  t h i s  e f f ec t  increased with increasing Mach number. This 
r e s u l t  i s  believed t o  be a t  l e a s t  p a r t l y  due t o  a combination of f l o w  
separation associated with the reverser  e f f lux  and separation stemming 
from compressibility e f f ec t s .  

These e f f e c t s  

A s  was the  case f o r  t he  l i f t  cha rac t e r i s t i c s ,  the  e f f e c t s  of forward 
t h r u s t  on the  pitching-moment cha rac t e r i s t i c s  were negl igible  compared t o  
the  e f fec ts  of reverse th rus t  ( f i g s .  4 through 9 ) .  The most pronounced 
e f f ec t  of reverse th rus t  w a s  t o  induce, a t  constant l i f t  coef f ic ien t ,  a 
nose-up increment of pitching moment which became progressively l a rge r  

This r e s u l t  w a s  
opposite t o  the  ant ic ipated e f f ec t s  of the  d i r ec t  t h rus t  forces .  Use of 
the thrust  reversers  resu l ted  i n  considerable reductions i n  the  l i f t  
coeff ic ients  a t  which abrupt changes i n  the slopes of the  pitching-moment 

with increasing jet-pressure r a t i o  and Mach number. T 
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curves occurred. 
these l i f t  coef f ic ien ts  were considerably l a rge r  than those required f o r  
normal cruis ing f l i g h t .  The e f fec t  of reverse t h r u s t  on the slopes of 
the pitching-moment curves was small up t o  moderate l i f t  coef f ic ien ts .  
Figure 24 i s  representat ive of t h i s  e f f ec t  and ind ica tes  that the  l a rges t  
slope changes occurred at the  higher Mach numbers and je t -pressure r a t i o s .  
The da ta  f o r  the t a i l - o f f  presented i n  f igures  19 through 21 show similar 
e f f e c t s  of t h rus t  reversa l  on pitching moment. Therefore, it would appear 
t h a t  the  nose-up increment of pitching moment associated with t h r u s t  
reversa l  i s  at  l e a s t  p a r t l y  due t o  changes i n  wing l i f t  d i s t r i b u t i o n  
caused by the  reverser  e f f lux .  

However, it should be noted t h a t ,  a t  most Mach numbers, 

The pitching-moment increment due t o  the horizontal  t a i l  and the  
ta i l -e f fec t iveness  parameter, a&/ai,, a r e  shown as funct ions of angle 
of a t tack  f o r  several  t h r u s t  conditions i n  f igu res  25 and 26, respect ively.  
Generally, the e f f e c t  of t h r u s t  reversal  on t a i l  e f fec t iveness  was  small; 
t h i s  w a s  a l s o  the case at  low l i f t  coef f ic ien ts  f o r  the  pitching-moment 
increment due t o  the horizontal  ta i l .  
reverse th rus t  caused moderate increases of, the  pitching-moment cont r i -  
bution of the ta i l .  
increment of pi tching moment previously noted f o r  conditions of reverse 
tlzrust . 

However, a t  higher angles of a t tack ,  

This e f f e c t  probably accounts f o r  some of the  nose-up 

The e f f e c t s  of diver t ing only about 50 percent of the  j e t  t a i l - p i p e  
e f f lux  through the reversers  a r e  shown i n  f igu res  16 through 18. 
t e s t  condition approached zero th rus t  and r e su l t ed  i n  a comparatively 
small reverse- thrust  increment which was almost independent of je t -pressure 
r a t i o .  
moxent zha rac t c r i s t i c s  of the model wcrc s iyLlar  t o  thc c f f c c t s  of reverser  
operation with complete t a i l -p ipe  blockage but. were of considerably smaller 
magnitude. 

This 

The e f f e c t s  of such reverser  operation on the  l i f t  and pi tching-  

Effects  of Mach Number 

The var ia t ion  of longitudinal-force coef f ic ien t  with Mach number at 
a l i f t  coef f ic ien t  of 0.30 i s  shown i n  f igure  27 f o r  several  t h rus t  
conditions.  
force divergence would be decreased as a r e s u l t  of t he  separated flow 
over port ions of the model immersed i n  the  flow f i e l d  from the  reverser .  
However, t h i s  e f f e c t  was  not apparent, and the Mach number f o r  drag diver- 
gence w a s  not a f fec ted  by operation of the  th rus t  reverser .  The e f f e c t s  
of Mach number on the  slopes of t he  l i f t  and pitching-moment curves a r e  
presented i n  f igure  28 a l s o  for a constant l i f t  coef f ic ien t  of 0.30 and 
several  t h rus t  conditions.  Reverse th rus t ,  as noted previously,  caused 
s igni f icant  reductions i n  the  l i f t -curve  slopes and increased the  va r i -  
a t i o n  of l i f t - cu rve  slope with Mach number. 

It w a s  an t ic ipa ted  t h a t  the Mach number f o r  longi tudinal-  

Also, reverse  t h r u s t  had 
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only a small e f f ec t  on t,he var ia t ion  of the  slopes of the pitching- 
moment curves with Mach number except a t  t he  highest t e s t  Mach number 
where moderately s t ab i l i z ing  slope changes occurred. 

Effects  of Thrust Reversal on the  Buffet 
Character is t ics  of t he  Model 

Relative buffet ing as indicated by the  f luc tua t ing  wing and t a i l  
bendi% moments, ABM, i s  shown fo r  several  Mach numbers i n  f igures  29 
through 34 f o r  various conditions of forward and reverse th rus t .  Also 
shown in these f igures  a re  the  average (s teady-state)  bending moments 
measured simultaneously with the  f luc tua t ing  values. I n  general ,  over 
t he  r e l a t ive ly  low-l i f t -coeff ic ient  range of i n t e r e s t  f o r  high-speed 
operation of the  t h r u s t  reversers ,  t h e  e f f e c t  of t h rus t  reversa l  on wing 
buffeting was small ( f i g s .  29 through 31).  
resul ted i n  small increases i n  the  f luc tua t ing  bending moments a t  the  
higher pressure r a t i o s  and Mach numbers. Also, f o r  these conditions,  
the  abrupt increase i n  f luc tua t ing  bending moment associated with buf fe t  
boundaries usually occurred a t  lower l i f t  coef f ic ien ts  than w a s  t he  case 
with forward thrus t .  This e f f e c t  of t h rus t  reversa l  i s  probably associated 1 

with the reductions i n  l i f t - cu rve  slope described previously. It i s  of 
i n t e re s t  t o  note t h a t  the  f luc tua t ing  bending moment of t he  wing root  
usual ly  did not exceed 10 percent of the  steady-state bending moment, 
and tha t  this value i s  probably higher than would be the  case f o r  a 
fu l l - sca le  a i rplane having the  same configuration because of differences 
i n  t h e  resomnce cha rac t e r i s t i c s  of t he  model and fu l l - sca l e  wings (see 
r e f .  2 ) .  

Thrust reversa l  usual ly  

Figures 32 through 34 show the  e f f e c t s  of t h rus t  reversa l  on the 
r e l a t i v e  buffet ing of the  horizontal  t a i l .  The l a rges t  of these e f f e c t s  
w a s  the  reduction i n  the  model l i f t  coef f ic ien t  a t  which abrupt increases 
i n  f luctuat ing bending moment occurred. As  w a s  the  case f o r  the  wing, 
these l i f t  coef f ic ien ts  were considerably higher than those of i n t e r e s t  
f o r  thrust  reverser operation a t  high speeds. 

Summation of t he  Effects  of Thrust Reversal on the  
Character is t ics  of a Hy-pothetical Airplane 

The e f f ec t s  of t h rus t  reversa l  on the  maximum r a t e  of descent a t  
several  constant Mach numbers and on some of t he  longi tudinal  character-  
i s t i c s  of a hypothetical  j e t - t ranspor t  a i rplane were estimated from the  
t e s t  results and a re  shown i n  f igures  35 and 36, respect ively.  
assumed tha t  t he  airplane weighed 200,000 pounds, had a w i n g  a rea  of 2750 
square feet ,  and was i n i t i a l l y  operating a t  30,000 f e e t  with the  j e t -  
pressure r a t i o s  required f o r  l e v e l  f l i g h t  a t  t h a t  a l t i t u d e .  

* 
It w a s  

- 

A 
3 
2 
1 

I -  
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Approximate r a t e s  of descent were calculated from the  following 
r e l a t i o n  : 

- Voo(thrust-dra,q) - -  
d t  gross weight 

The maximum rates of descent possible a t  several  constant Mach numbers 
f o r  the  power-off condition are compared i n  figure 35 with the  r a t e s  of 
descent avai lable  with thrust reversal .  Use of t he  reverser  with 
complete t a i l -p ipe  blockage permitted the  i n i t i a l  rate of descent from 
an a l t i t u d e  of 30,000 f e e t  and a t  a constant Mach number of 0.80 t o  be 
increased from about 5200 f e e t  per minute t o  about 12,800 f e e t  per minute. 
I n  an emergency s i tua t ion ,  t h i s  could represent t he  difference between 
a safe control led descent a t  high speed and incapaci ta t ion of t he  occupants 
of the  airplane from anoxia (see r e f .  5 ) .  

Figure 36 shows some of t h e  e f fec ts  of t h r u s t  reversa l  on the longi- 
tud ina l  charac te r i s t ics  of the  hypothetical j e t - t ranspor t  a i rplane making 
a li&ii-SFeZC deszer;t. $ e r z t f m  cf the reverser a t  a Mach nmiber of 0.80 
and a t  an i n i t i a l  a l t i t u d e  of 30,000 f e e t  with complete t a i l -p ipe  blockage 
and the  pressure r a t i o s  normally required for l e v e l  f l i g h t  resu l ted  i n  a 
small s t ab i l i z ing  movement of the  aerodynamic center (from about 56-percent 
E 
t a i l  incidence required f o r  t r i m .  

t o  about 58-percent E )  and about a 1" increase I n  the  horizontal-  

CONCLUSIONS 

A wind-tunnel invest igat ion has been made t o  evaluate the  e f f e c t s  of 
t h rus t  reversa l  upon the  longitudinal and buffet ing cha rac t e r i s t i c s  of a 
hypothetical  je t - t ransport  a i rplane configuration a t  r e l a t i v e l y  high speeds. 
The Mach number range was from 0.40 t o  0.86. 
were indicated: 

The following conclusions 

1. Thrust reversa l  can be used as a very e f fec t ive  method of speed 
cont ro l  f o r  je t - t ransport  a i rplanes making steep, r e l a t i v e l y  rap id  descents 
from operational a l t i t u d e s .  Use of thrust reversers  can more than double 
the  cruise  drag of such a i r c r a f t  and, a t  a constant Mach number of about 
0.80, will permit t he  i n i t i a l  r a t e  of descent from cruis ing a l t i t u d e s  t o  
be increased from about 5000 f e e t  per minute t o  over 12,000 feet  per  
minute. 

2. Thrust reversa l  had o n l y  small e f fec t  on the  longi tudinal  stabil i ty 
and t r i m  cha rac t e r i s t i c s  of the  model, at  least ,  a t  the  l i f t  coe f f i c i en t s  
required f o r  rap id  descents by je t - t ransport  a i r c r a f t .  
reversers  a t  a Mach number of 0.80 and an assumed i n i t i a l  a l t i t u d e  of 
3O,OOO f e e t  with complete ta i l -p ipe  blockage and a t  jet-pressure r a t i o s  

Operation of the 
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normally required f o r  l e v e l  f l i g h t  resu l ted  i n  a sma l l  s t ab i l i z ing  
movement o f  t he  aerodynamic center corresponding t o  about 2 percent of 
t he  mean aerodynamic chord and about a lo increase i n  the  horizontal-  
t a i l  incidence required f o r  t r i m .  

3. Reverse t h r u s t  resu l ted  i n  reductions i n  l i f t - cu rve  slope and 
reduced the  l i f t  coef f ic ien ts  a t  which s ta t ic - longi tudina l  i n s t a b i l i t y  
occurred. 
higher than the  l i f t  coef f ic ien ts  of i n t e r e s t  f o r  reverser  operation a t  
high speeds. 

However, these lift coef f ic ien ts  were usual ly  considerably 

4. The e f f e c t s  of t h r u s t  reversa l  on the  buffet ing cha rac t e r i s t i c s  
of both the  wing and t a i l  of the  model were 
l i f t  coefficients associated with the  steep, high-speed descents these 
e f f e c t s  could be neglected. 2 

small. A t  the r e l a t ive ly  low A 
3 

1 
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TABLE I.- MODEL COORDINATES 
(a) Coordinates of fuselage 

- 

Distance from 
nose, 
in. 
0 
50 

1 .oo 
2 .oo 
4 .OO 
8 .oo 
12 .oo 
16 .oo 
20 .oo 
24 .OO 
28.44 

Radius, 
in. 

0 
0934 
1.314 
1.842 
2.557 
3.477 
4.080 
4.497 
4.775 
4 *939 
5 .ooo 

Distance from 
nose, 
in. 
40 .OO 
50 .oo 
59 -00 
65 .oo 

77 000 
83 .oo 
89 .oo 
95 -00 
105 .oo 
115 .oo 

71 .OO 

(b) Coordinates of nacelles 
0 
-257 
.482 
0932 
1.832 
3,632 
5 0432 
7.021 

0 
336 
507 
760 

1.088 
1.436 
1.585 
1.618 

, I  .kii 
9 -032 
10.832 
12.632 
14.432 
15.064 
17.893 
18.697 

Radius, 
in. 

5 .ooo 
5 .ooo 
5 .ooo 
4.960 
4.834 
4.609 
4.266 
3 767 
3.028 
1.514 
0 

-! L7R I .VI- 

1 A06 
1.543 

1 365 
1 365 

1.430 

1.365 
1.365 
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0.40 
.60 
70 
.80 
-83 
.86 

TABU 11.- COKRECTIONS TO DATA 

(a) Corrections for constriction effects 

0 0399 
*597 
.696 
792 
.820 
.847 

i Corrected Uncorrected I %orrected I Mach number I Mach number %mcorrected 
1.005 
1.006 
1.008 
1.012 
1.014 
1.017 

(b) Corrections for tunnel-wall interference 

0.40 
.60 

.80 
083 
.86 

70 
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3 
2 
1 

.\ 
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Figure 1. - Concluded. 
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A-24456 

Figure 2.- Model in the  wind tunnel. 
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Figure 3. - Forward and fu l l - reverse  thrust  cha rac t e r i s t i c s  of the model; 
M = 0. 
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Figure 24.- The effect of forward and reverse thrust at several Mach 
numbers on the pitching-moment c w e  slopes of the model; CL = 0.30. 
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Figure 25.- The e f f e c t  of forward and reverse t h r u s t  a t  severa l  Mach 
numbers on the va r i a t ion  of the pitching-moment contribution of 
the  horizontal  t a i l  with angle of attack; it = -2'. 
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Figure 26.- The effect of forward and reverse thrust at several Mach 
numbers on the variation of tail-effectiveness parameter, aC&it, 
w i t h  angle of attack. 
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Figure 28.- The e f f ec t  of Mach number at constant jet-pressure r a t i o  
on the slopes of the l i f t  and pitching-moment curves for forward 
and reverse thrus t ;  CL = 0.30. 
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Figure 29.- The e f f ec t  of forward and reverse thrust on the  steady 
s t a t e  and f luctuat ing bending moments of the  wing; M = 0.40, 
g =: 126 psf. 
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30.- The e f f ec t  of forward and reverse t h r u s t  on t h  
;e and f luc tua t ing  bending molrents of the  w i n g ;  M = 
225 psf .  

le steady 
0.70, 



4 
3 
2 
1 

83 



a4 

( a )  ~,/p, = 1.0, 2.0 

Figure 31.- The e f f ec t  of forward and reverse t h r u s t  on the steady 
s t a t e  and f luc tua t ing  bending moments of the  wing; M = 0.80, 
q z 260 psf.  
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Figure 32.- The e f f ec t  of forward and reverse t h rus t  on the steady 
s t a t e  and f luctuat ing bending moments of the  horizontal  t a i l ;  
M = 0,40, q z 125 psf,  it = -2'. 
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Figure 33.- 

Forward thrust Iw@@!i,l -------Reverse thrust E 
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( a )  Pn/p, = 1.0, 2.0 

The e f f ec t  of forward and reverse t h r u s t  on the steady 
s t a t e  and f luc tua t ing  bending moments of the  horizontal  t a i l ;  
M = 0.70, q "N 225 psf ,  it = -2'. 
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Figure 34.- The e f f ec t  of forward and reverse thrust  on the steady 
s t a t e  and f luctuat ing bending moments of the horizontal  ta i l ;  
M = 0.80, q z 260 psf, it = -2O. 
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